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Abstract

The closed-loop state feedback control scheme by pole-placement technique, which is widely used in
control literature, is applied to control the flutter instability of suspension bridges. When the mean wind
speed U at the bridge site increases beyond the critical flutter wind speed, the real part of the dominant pole
of the system is forced to a desired negative value by properly designing a state feed back gain matrix to
control the flutter instability. The control force, which is expressed as a product of gain matrix and state
vector in modal coordinates, is applied in the form of an active torsional moment in the middle of the
bridge span. The values of the state variables are estimated by designing a full order observer system. The
application of the control scheme for increasing the critical wind speed for flutter of suspension bridges is
demonstrated by considering the Vincent Thomas Bridge as the numerical example. The efficiency of the
method for controlling the bridge deck flutter is investigated under a set of parametric variations. The
results of the numerical study show that the control scheme using pole-placement technique effectively
brings down the divergent oscillation of the bridge at wind speeds greater than the critical wind speed for
flutter, to almost zero value within few seconds.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Long-span suspension bridges, due to their flexibility and lightness, are much prone to the
flutter instability. Flutter is a wind-induced instability in the bridge deck at a critical wind velocity
see front matter r 2004 Elsevier Ltd. All rights reserved.
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leading to an exponentially growing response. The evaluation of flutter condition of suspension
bridges is one of the most important phases in the design of these bridges.

In recent years, many researchers [1–12] have focused their attention on increasing the critical
flutter wind speed of the cable-supported bridges using different types of control devices. Wilde
et al. [10] proposed a passive aerodynamic control of flutter by adding two additional surfaces to
generate stabilizing forces and by putting an additional pendulum to control the torsional motion.
Other studies also have been carried out to control the critical flutter wind speed of long-span
bridges using eccentric mass on the bridges [13–15]. In 2002, the authors [12] proposed a passive
control of critical flutter wind speed of suspension bridges using a combined vertical and torsional
tuned mass damper (TMD) system. The proposed TMD system has two degrees of freedom,
which are tuned close to the frequencies corresponding to vertical and torsional symmetric modes
of the bridge, which get coupled during flutter.

Even with these advances, challenges still exist in increasing the critical flutter wind speed by
applying reasonable external devices such as active control force or passive control properties, and
trying to find practical methods to control the flutter condition of these bridges. In particular,
application of pole-placement technique for control of bridge vibration is much less compared to
that of optimal control theory [16]. Meirovitch and Ghosh [17] used modal control for
suppressing the suspension bridge flutter, but they essentially used optimal control theory in
modal space. Since control of bridge flutter is associated with the problem of making the system
stable from an unstable state, the pole-placement technique should find as good application for
this problem.

In this paper, the closed-loop state feedback control method by pole-placement technique,
which has been used for other control problems, is applied to stabilize the flutter instability
condition of suspension bridges. For this purpose, the equation of motion of the system is
obtained by multi-mode finite element modeling (beam element) of the bridge deck using
consistent mass matrix. The consistent mass matrix and structural stiffness matrix are evaluated
using energy approach, which duly considers the effects of suspended cables. The final controlled
equation of motion of the system is obtained in states space in terms of the generalized modal
coordinate vector. The control force w is considered proportional to the values of the state vector,
which are estimated by designing a full-order observer system. The control scheme is applied to
suppress the flutter instability of Vincent Thomas Bridge and its effectiveness for flutter control of
suspension bridge is investigated for different mean wind speeds through a numerical study.
2. Assumptions

The following assumptions are made in the analysis:
1.
 All stresses in the bridge elements obey the Hooke’s law, and therefore no material nonlinearity
is considered.
2.
 The control force and the output of the system are considered as scalar quantities.

3.
 The initial dead load is carried by cables without causing any stress in the suspended structure.

4.
 Small defection theory is applied to obtain the dynamic equation of motion of the suspension

bridge.
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3. Equation of motion of the bridge

The equation of motion of the system is obtained by multi-mode finite element method in time
domain using the energy approach and applying the Hamilton’s principle. For this purpose, the
entire bridge is discretized into two-dimensional beam elements, each consisting of two nodes at
its ends. At each node four degrees of freedom, namely vertical displacement ðqn1Þ; bending
rotations ðqn

2Þ; torsional rotation ðqy1Þ; and warping displacement ðqy
2Þ; as shown in Fig. 1, are

considered.
The governing equation of motion for flutter can be written as

½M�f €xg þ ½C�f _xg þ ½K�fxg ¼ fFg þ ½B1�w; (1)

where [M] is the consistent mass matrix, [C] is the structural damping matrix, [K] is the structural
stiffness matrix, ½B1� is the ð4n 	 1Þ input matrix showing the location at which the control force is
applied, w is the scalar constant control force, fFg is the ð4n 	 1Þ vector of aeroelastic forces, and
Fig. 1. (a) Suspension bridge model; (b) bridge element with vertical displacement; (c) bridge element with torsion.



ARTICLE IN PRESS

S. Pourzeynali, T.K. Datta / Journal of Sound and Vibration 282 (2005) 89–10992
fxg is the ð4n 	 1Þ response vector defined as follows

fxg ¼ fx1; x2; . . . ;x4ng
T
1	4n (2)

in which n is the number of nodes along the total bridge length, xi is the bridge response at ith
degree of freedom. Note that the aeroelastic forces for bending rotation and warping degrees of
freedom are zeroes.

The motion-dependent aeroelastic or self-excited forces acting per unit length of the bridge span
as shown in Figs. 2(a) and (b) were presented by Scanlan et al. [18]. Meirovitch and Ghosh [17]
used the expression given by Scanlan et al. [18] for investigating the flutter control of suspension
bridges. Most complete version of the expression for the aeroelastic lift and moment forces were
given by Jain et al. [19] and are used in the present study in the following form:

Le ¼
1

2
rU2B0 kH�

1

_h

U
þ kH�

2

B0 _y
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in which r is the air mass density, U is the mean wind velocity, B0 is the bridge deck width,
k ¼ B0o=U ¼ the reduced frequency, o is the circular response frequency, H�

i and A�
i ; i ¼ 1 to 4

are the functions of k and are the experimentally determined flutter derivatives for the deck cross-
section under investigation. Over dots indicate the time derivative. The flutter derivatives are
obtained from wind tunnel tests on model bridge deck cross-sectional properties and are plotted
as a function of the non-dimensional parameter k. For thin airfoil, analytical expressions are
available for these derivatives. Experimental techniques to determine these derivatives are
available in literature [20,21]. The details of the procedure for determining the flutter derivates
used in the present investigation are given by Scanlan and Tomoko [20].

It is to be noted that the complete version of the aeroelastic expressions for the lift and moment
forces contain two more terms which contain drag flutter derivatives associated with the lateral
motion of the bridge deck. These two terms are neglected in the present study because they are not
available for most of bridge sections reported in the literature. In one of the experimental studies
Fig. 2. Self-excited forces: (a) distributed vertical load; (b) distributed torsional moment; (c) lumped vertical load; (d)

lumped torsional moment.
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on model bridge cross-section Singh et al. [22] showed that there is a strong possibility of the
dependence of lift on lateral (sway) motion. As a result, the lateral motion may significantly affect
flutter wind speed if vertical–lateral or vertical–lateral–torsional mode of vibration predominantly
governs the critical flutter wind speed. Since literature on the effect of lateral motion in modifying
the critical wind speed for flutter of long span bridges in quantifiable terms is scanty, the present
study considers only the vertical–torsional flutter condition for the control problem. If lateral
motion is also included in the flutter problem, the pole placement technique can be easily extended
for controlling such flutter condition.

The forces obtained by Eqs. (3a) and (3b) are considered to be constant along the element.
In order to evaluate the aeroelastic force vector fFg in Eq. (1), the distributed aeroelastic forces
are lumped at the element nodes as shown in Figs. 2(c) and (d). The mass and stiffness matrices
in Eq. (1) are considered for double symmetric bridge deck and may be expressed as

½M� ¼
MV zeros

zeros My

" #
ð4n	4nÞ

; (4)

½K� ¼
KV zeros

zeros Ky

" #
ð4n	4nÞ

; (5)

whereMV and KV are the mass and stiffness matrices, respectively in bending vibration, andMy

and Ky are those of the torsional vibration. Note that there is no modal coupling between the
vertical and torsional modes of vibration in linear analysis for doubly symmetric bridge decks [23].
Using the total potential and kinetic energies of the bridge and applying the Hamilton’s principle,
the structural mass and stiffness matrices for vertical and torsional motions of the system can be
evaluated [24,25]. The structural damping matrix [C] is assumed to be proportional to mass and
stiffness matrices.

Using Eqs. (3a) and (3b) and lumping of the aeroelastic forces at the element nodes the ð4n 	 1Þ
aeroelastic force vector fFg can be expressed in the form

fFg ¼
1

2
rU2B0 k

U

� �
½AF

�f _xg þ
1

2
rU2B0k2

½BF �fxg; (6)

where fxg is defined in Eq. (2), and matrices ½AF
� and ½BF � are given in the Appendix A.

Substituting Eq. (6) into Eq. (1), the final equation of motion can be expressed as

½M�f €xg þ ½C�f _xg þ ½K�fxg ¼
1

2
rB02o½AF

�f _xg þ
1

2
rB03o2½BF �fxg þ ½B1�w: (7)

It is convenient to solve problem of flutter control in modal space as carried out by Meirovitch
and Ghosh [17]. By considering the displacement vector fxg in terms of modal matrix ½U� and
generalized modal coordinate vector fnðtÞg as

fxg ¼ ½U�fnðtÞgm	1 (8)
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and using a standard modal transformation, the ith modal equation can be obtained as
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Xm
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where dij is the Kronecker delta function ¼
1; i ¼ j;

0; iaj;

�
(10)

m is the number of modes considered, m̄i is the ith modal mass, and dij and eij are the elements of
the matrices [D] and [E] defined as

½D� ¼ ½U�T½AF�½U� and ½E� ¼ ½U�T½BF�½U�: (11)

Eq. (9) can be written in a matrix form as

½I�f€xðtÞg þ ½P�f_nðtÞg þ ½Q�fnðtÞg ¼ ½U�T½B1�w (12)

in which [I] is the identity matrix of order m, [P] and [Q] are the square matrices of size m 	 m for
which the elements can be defined as

Pij ¼ 2zioidij �
1

2
rU2B0 k

U

dij

m̄i

; (13)

qij ¼ o2
i dij �

1

2
rU2B0k2 eij

m̄i

: (14)

Finally, by choosing the modal coordinates as the state variables, the state equation can be
written in the standard state-space form as follows

f_zg ¼ ½A�fzg þ ½B�w (15)

in which the ð2m 	 1Þ state vector fzg is defined as

fzg ¼
fnðtÞgm	1

f_nðtÞgm	1

� 	
2m	1

: (16)

The state matrix [A], and the input matrix [B] are, respectively, given by

½A� ¼
½0� ½I�

�½Q� �½P�

� �
2m	2m

; ½B� ¼
½0�

½U�T½B1�

� �
2m	1

; (17)

where [0] and [I] are the zero and identity matrices of order m 	 m; respectively; and the other
matrices previously are defined.
4. Design of control system by pole placement

According to the second method of Liapunov stability analysis, for a system represented by
Eq. (15), the eigenvalues of the system need to be investigated. For this purpose, the eigenvalues of
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the following equation is obtained:

f_zg ¼ ½A�fzg: (18)

If all eigenvalues of matrix [A] have negative real part, the system is asymptotically stable.
Further, a necessary and sufficient condition for all eigenvalues to have negative real part is that
they have determinant with positive coefficient of the leading terms of their characteristic
polynomial. The eignvalues of the matrix [A] are called the poles of the original system. The
stability of a linear closed-loop system can be determined from the location of the closed-loop
poles in the complex s plane, in which s are the poles of the system. If any of these poles lie on the
right half of the s plane, then the system is unstable. Therefore, closed-loop poles on the right half
of s plane are not permissible in the usual linear control system. If all closed-loop poles lie to the
left half of s plane, then the system is stable.

Whether a linear system is stable or unstable is a property of the system itself and does not
depend on the input of the system. Thus, the problem of absolute stability can be solved readily by
choosing no closed-loop poles on the right half of s plane, including the io-axis. Mathematically,
closed-loop poles on the io-axis will yield oscillations, the amplitude of which is neither decaying
nor growing with time. If dominant complex-conjugate closed-loop poles lie close to the io-axis,
the transient response exhibits excessive oscillations or it may be very slow. Therefore, to
guarantee fast, yet well-damped, transient response characteristics, it is necessary that the closed-
loop poles of the system lie in a particular region far away from the io-axis. For a second-order
closed-loop control system, it is shown [26] that the poles can be written as

s ¼ �zon 
 ion

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
¼ �zon 
 iod ; od ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

q
; i ¼

ffiffiffiffiffiffiffi
�1

p
; (19)

where z is the damping ratio, on is the undumped natural frequency (rad/s), and od is the damped
natural frequency. Without any loss of generality, for a multi-dof second-order closed-loop
control system also, the poles can be written in the above form in terms of the modal damping
ratio and natural frequency.

In suspension bridges at flutter condition (U ¼ Uf ; o ¼ of ; and k ¼ kf ; where subscript f

denotes the flutter condition), the damping of the dominant mode (mostly the torsional mode) is
either zero or negative. Therefore, according to Liapunov’s second method, the real part of
dominant pole becomes either zero or positive, and makes the system unstable. It is shown [26]
that if the system considered is completely state controllable, then poles of the closed-loop system
may be placed at any desired location by means of state feedback through an appropriate state-
feedback gain matrix. In the present study, the desired poles are chosen such that the real parts of
all poles are negative. The procedure of designing the state feedback gain matrix in order to
replace the poles of the system to desired values of s1 ¼ m1; s2 ¼ m2; . . . ; sn ¼ mn; is given in the
following.

Consider that the control force w in Eq. (15) is of the following form

w ¼ �½K1�fzg (20)

in which w is the scalar value of the control force, ½K1� is the 1	 ð2mÞ state feedback gain matrix,
and fzg is the state vector. Fig. 3 shows the block diagram of this closed-loop control system.
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Substituting Eq. (20) into Eq. (15) gives

f_zg ¼ ð½A� � ½B�½K1�Þfzg: (21)

If the matrix ½K1� is chosen properly, the matrix ð½A� � ½B� 	 ½K1�Þ can be an asymptotically stable
matrix and therefore, for any initial condition it is possible to make fzðtÞg approach f0g as t

approaches infinity. There are many active control schemes, which use the stability criterion for
obtaining the gain matrix of the stable control system [27]. Also, detail discussions on the degree
of stability are available in literature [27,28]. Here, pole placement technique is used for this
purpose in which the eigenvalues of the matrix ð½A� � ½B� ½K1�Þ are the desired poles of the
controlled system, which would replace the poles of unstable system. The necessary and sufficient
condition for arbitrary pole placement to make all eigenvalues to have negative real part is that
the rank of the controllability matrix [H], defined in Eq. (22), to be equal to the dimension of the
matrix itself, i.e.,

½H� ¼ ½B j AB j . . . j An�1B �; (22)

where n is dimension of the matrices. Then, the state feedback gain matrix ½K1� can be written as

½K1� ¼ ½an � an
..
.

an�1 � an�1
..
.

� � � ..
.

a2 � a2
..
.

a1 � a1�½T�
�1; (23)

where ½T��1 is the inverse of the transformation matrix [T] given by

½T� ¼ ½H�½W� (24)

and ai’s are coefficients of the characteristic polynomial

jsI� Aj ¼ sn þ a1sn�1 þ � � � þ an�1s þ an (25)

and the coefficients ai’s are related to the desired poles s1 ¼ m1; s2 ¼ m2; . . . ; sn ¼ mn; and can be
obtained from the desired characteristic equation as

ðs � m1Þðs � m2Þ � � � ðs � mnÞ ¼ sn þ a1sn�1 þ � � � þ an�1s þ an ¼ 0: (26)
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Matrix [W] in Eq. (24) is given as

½W� ¼

an�1 an�2 � � � a1 1

an�2 an�3 � � � 1 0

..

.
� � � � � � � � � � � �

a1 1 � � � 0 0

1 0 � � � 0 0

2
66666664

3
77777775
; (27)

where ai’s are given by Eq. (26).
It is noted that for a given system, the matrix ½K1� is not unique, but depends on the desired

closed-loop locations selected, which determine the decay of the response. In order to determine
the gain matrix ½K1� for a given system, the response characteristics of the control system is to be
studied for a number of cases and the best one is to be selected.

For calculating the gain matrix ½K1�; the full-order state variables are needed. It is seen
from Eq. (15) that the generalized modal coordinates are taken as the state variables for the
problem. Since these state variables are not measurable, it is necessary to design a full-
order observer system to estimate the values of state variables from the actually measured
responses. These estimated values of the state variables are used in Eq. (20) for calculating the
control force w.
5. Design of full-order observer system

Consider that a system with a single input w and a single output y is given by the following
equations:

f_zg ¼ ½A�fzg þ ½B�w; (28)

y ¼ ½C1�fzg; (29)

w ¼ �½K1�fzg: (30)

Assume that, for this system the state fzg is to be approximated by the state f~zg through an
observer system for which the dynamic model is given by the following equation:

f_~zg ¼ ½A�f~zg þ ½B�w þ ½Ke�ðy � ½C1�f~zgÞ; (31)

where ½Ke� is the observer gain matrix. It is noted that the last term in Eq. (31) is a correction term
that involves the difference between the measured output y and the estimated output ½C1�f~zg; and
matrix ½Ke� serves as a weighting matrix. Also, in the case of any difference between the matrices
[A] and [B] of the actual system and those used in the observer model, the additional correction
terms will reduce the effect of this difference. Fig. 4 shows the block diagram of the control system
and the full-order state observer. Subtracting Eq. (31) from Eq. (28), an equation in terms of
observer error vector feg can be written as

f_eg ¼ ½ðA� � ½Ke�½C1�Þfeg; (32)
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where

feg ¼ fzg � f~zg: (33)

The dynamic behavior of vector feg depends on the eigenvalues of the matrix ð½A� � ½Ke�½C1�Þ:
It means that if matrix ð½A� � ½Ke�½C1�Þ is a stable matrix, then the error vector feg approaches
to zero for any initial error feð0Þg: Therefore, similar to the pole-placement technique, it is
possible to calculate the ½Ke� matrix such that the matrix ð½A� � ½Ke�½C1�Þ has the desired
eigenvalues. By defining a dual system, the desired ½Ke� matrix is evaluated. The details are given
by Ogata [26].

The procedure (given in Sections 4 and 5) for the design of full-order observer system and
determination of gain matrices ½Ke� and ½K1� are explained for single input control force and single
response out put. The procedure can be easily extended to multi-point control actions and multi-
point response measurements. Multi-point control actions, which are same in magnitude and
phase, can be accommodated by making the elements of location vector fB1g as unity
corresponding to locations where control forces are introduced. Accordingly, ½K1� or ½Ke� row
matrices are changed, but they can be generated using computer simulation without much
difficulty. However, when multi-point input signals (control forces) are different in magnitude and
phase, i.e., they form a vector quantity, the mathematical aspects of the pole placement scheme
become complicated. In that event, the state feedback gain matrix is not unique because
placement of the required number of closed-loop poles is not completely correlated to the system
dynamics. It is possible to choose freely some other parameters that may change the gain matrix.
The details of the treatment of multi-point input signal represented as a vector quantity is given by
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Ogata [29]. Multi-point response measurements can be easily accommodated by modifying ½C1�

matrix (Eq. (29)), elements of which are assembled from the mode shape matrix of the system
represented by Eq. (15).
6. Equation of motion of the system with observer

The control force w as given by Eq. (20), should therefore be written as

w ¼ �½K1�f~zg; (34)

where f~zg is the estimated value of the state vector. By combining Eqs. (8), (9), (12)–(14), and (21),
the final state-space equation of the control system can be expressed as

_z

_e

� 	
¼

A� BK1 BK1

0 A� KeC1

� �
z

e

� 	
: (35)

This control system is called observed-state feedback control system. Therefore, the design
procedure of an observed-state feedback control system becomes a two-stage process. In the first
stage, the state feedback gain matrix ½K1� and in the second stage, the state-observer gain matrix
½Ke� is to be calculated.
7. Numerical study

As the numerical example, the Vincent Thomas Suspension Bridge located between San Pedro
and Terminal Island in Los Angeles County, California is chosen.

The stiffening girder is assumed to be hinged at the ends in each span, and the cables are
free to move at the tower top (i.e. roller type cable connection). The number of elements in the
side spans, N1 ¼ N3; is taken to be 11 elements, and those for the center span, N2 is taken as 28
elements.

For this three-span suspension bridge, the structural data are taken from the literature [24,25].
Some of the structural data are given in the following:

(1) one center span l2 ¼ 460m; (2) two side spans l1 ¼ l3 ¼ 155m; (3) dead load of the
bridge w

�
¼ 52438:020N/(m-cable); (4) cross-sectional area of one cable, Ac ¼ 0:0780m2; (5)

moment of inertia of bridge deck for center span I2 ¼ 0:7258m4; and for side spans I1 ¼ I3 ¼

0:7498m4:
The results of the free vibrational analysis (first 19 frequencies and first 6 mode shapes)

are respectively shown in Table 1 and Fig. 5. In the figure, V and T refer to vertical and
torsional respectively, and A and S refer to anti-symmetric and symmetric, respectively. It is
seen that the first five modes correspond to the vertical mode of vibration. Note that
free vibrational mode shapes are either purely vertical or purely torsional as it would be
expected.
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Table 1

Modal properties of Vincent Thomas Suspension Bridge

Mode no. Frequency o (rad/s) Mode type Modal mass ðm̄Þ

1 1.2324 V-AS 2459813.72

2 1.3743 V-S 2241151.36

3 2.1595 V-AS 1691846.37

4 2.1744 V-S 2835117.10

5 2.8710 V-S 2473230.58

6 3.1163 T-S 97988365.63

7 3.4215 V-AS 2587940.03

8 4.4124 T-AS 104389535.3

9 5.0012 V-S 2370506.36

10 6.68024 T-AS 71798615.43

11 6.7388 T-S 127314525.1

12 6.8351 V-AS 853012.18

13 6.8352 V-S 1021244.00

14 6.8791 V-AS 2460065.24

15 7.0556 T-S 90569439.11

16 9.1062 V-S 2441548.53

17 9.2418 T-AS 1098227534.8

18 11.6557 V-AS 2587889.91

19 11.9381 T-S 103285020.90

Note: T=torsional; V=vertical; S=symmetric; AS=anti-symmetric.

Note: A *
1 , A

*
4  and H *

4 are
assumed to be neligible. 

 mode 2
(V-S)

n=0.2187 hz

mode 3
(V-A) n=0.3437 hz

mode 5
(V-S) 

n=0.4569 hz

  mode 1
(V-A)

n=0.1961 hz

 mode 4
(V-S)

n=0.3461 hz

 mode 6
(T-S)

n=0.4960 hz

Fig. 5. First six free vertical and torsional vibrations mode shapes.
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The approximate theoretical expressions for the flutter derivatives for the bridge deck may be
written as [20]

A�
1 ’ 0; H�

1 ¼ �0:8y1 for all y1;

A�
2 ¼ �0:1436 sinð0:5984y1Þ; 0py1p5:25;

A�
2 ¼ 0:08422y1 � 0:4411; 5:25oy1;

H�
2 ¼ 0; 0py1p5;

H�
2 ¼ 0:00582y3

1 � 0:0121y2
1 � 0:60252; 5oy1;

A�
3 ¼ 0; 0py1p2;

A�
3 ¼ 0:2y1 � 0:4; 2py1p6;

A�
3 ¼ 0:3y1 � 1; 6oy1;

H�
3 ¼ 0; 0py1p4;

H�
3 ¼ �0:011666y3

1 þ 0:11y2
1 � 1:41334y1 þ 4:64003; 4oy1

(36)

in which

y1 ¼
2p
k
; k ¼

B0o
U

:

Since the values of H�
4 and A�

4 for this bridge are not available, they are assumed to be
negligible.

The flutter condition of this bridge is obtained by authors in another study [12]. It is observed
that the 6th mode (i.e. the first symmetric torsional mode) is the predominant mode for the flutter
condition. This mode gets coupled with the 2nd and 5th modes, which are the first and third
vertical symmetric modes, respectively for the flutter condition. The contributions of the other
modes in flutter occurrence are very less in comparison with these modes. Thus, consideration of
first four modes for the flutter analysis is sufficient. Therefore, for further parametric studies first
four modes are considered in the analysis. The flutter condition for this bridge, for a damping
ratio of 0.8%, is calculated as Uf ¼ 55:52m=s; of ¼ 2:9125; and kf ¼ 0:946:

In order to perform the stability analysis, the responses of the bridge due to initial condition,
for three different mean wind speeds, U ¼ 50m=s; U ¼ Uf ¼ 55:52m=s and U ¼ 60m=s;
are considered. The initial condition for the state variables fzg is considered as fz0g ¼

f0; 0; 0; 0:05; 0; 0; 0; 1g:
Figs. 6 and 7 compare the results of the controlled and uncontrolled responses of the bridge

at a mean wind speed U ¼ 50m=s; which is less than the critical flutter wind speed for this bridge.
Fig. 6 shows the vertical displacement, while Fig. 7 shows the torsional displacement of the
bridge. As it can be seen from the figures, when U is less than Uf ; the uncontrolled response of the
bridge decays with time. The eigenvalues of state matrix [A] for this case is shown in Table 2. It is
seen from the table that the real parts of all eigenvalues (poles of the system) are negative and
therefore, the system is stable. In order to control the system the real part of the dominant pole,
i.e. �0:0056; is replaced with a value of �0:08: The values of the other poles are kept the same as
they were. It is seen from Figs. 6 and 7 that both vertical and torsional responses decay much
faster and reach to almost zero value within a very short time. The control action needed to force
the dominant pole of the system from �0:0056 to �0:08; is shown in Fig. 8. It is seen from the
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Fig. 6. Controlled and uncontrolled bridge vertical responses due to initial conditions at mean wind speed U ¼ 50m=s
(original - - - -, controlled —).
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Fig. 7. Controlled and uncontrolled bridge torsional responses due to initial conditions at mean wind speed U ¼

50m=s (original - - - -, controlled —).
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figure that very small control action is required to make the responses decay at a faster rate. Note
that the applied control action is a torsional moment applied at the middle of the center span of
the bridge. This is the case because the torsional mode of vibration practically governs the
responses of the particular bridge as discussed before.

Comparison between the results of the controlled and uncontrolled responses of the bridge at
flutter condition, i.e. U ¼ Uf ¼ 55:52m=s; and at U ¼ 60m=s; which is more than the critical
flutter wind speed, is shown in Figs. 9 and 10, respectively. It is seen from the figures that the
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Table 2

Eigenvalues of the state matrix [A] in different cases

Case 1, U ¼ 50 (m/s) Case 2, U ¼ Uf ¼ 55:52 (m/s) Case 3, U ¼ 60 (m/s)

�0:1434þ 1:3666i �0:1581þ 1:3650i �0:1699þ 1:3636i
�0:1434� 1:3666i �0:1581� 1:3650i �0:1699� 1:3636i
�0:1554þ 2:8666i �0:1700þ 2:8657i �0:1819þ 2:8650i
�0:1554� 2:8666i �0:1700� 2:8657i �0:1819� 2:8650i
�0:1498þ 2:1694i �0:1645þ 2:1684i �0:1763þ 2:1674i
�0:1498� 2:1694i �0:1645� 2:1684i �0:1763� 2:1674i
�0:0056þ 2:9529i �0:0001þ 2:9131i þ0:0047þ 2:8776i
�0:0056� 2:9529i �0:0001� 2:9131i þ0:0047� 2:8776i
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Fig. 8. Control force to reduce the bridge response at mean wind speed U ¼ 50m=s:
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uncontrolled responses are sustained harmonic motion for flutter wind speed, while for wind
speed greater than flutter speed (i.e. to up to 60m/s) they diverge to infinity with increase in time.
The eigenvalues of the state matrix [A] for these two cases are also shown in Table 2. It is seen
from the table that the real part of the dominant pole, for the flutter condition is almost zero
ð�0:0001Þ; while that for U ¼ 60m=s; it is positive (+0.0047). Therefore, the system is unstable
for both cases. In order to control the response, the real parts of the dominant poles of both cases
are changed to �0:08 keeping the values of other poles to remain the same as they were. Note that
the value of �0:08 is selected by computer simulation in order to obtain a good controlled
response. The elements of the state control feedback gain matrix ½K1� for the above three cases are
given in Table 3.

It is seen from the figures that the transient responses are brought to almost zero values within
50 s. Thus, the active control with a torsional moment at the middle of central span of the bridge
can alleviate the flutter wind speed considerably.

Figs. 11 and 12 show the values of the active control forces, which are applied to the system for
the above two cases. It is seen that the maximum values of the torsional moment required for the
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Fig. 9. Controlled and uncontrolled bridge responses due to initial conditions at mean wind speed U ¼ Uf ¼ 55:52m=s
(original - - - -, controlled —).
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two cases are not significantly different and are quite small. This indicates the effectiveness of the
pole-placement technique to stabilize the flutter instability of the suspension bridges.

In order to design the full-order observer system, the poles of the observer are selected as
f�1;�1;�1;�1;�6;�6;�6;�6g: These values are also chosen based on the computer simulation
such that to make the speed of the state observer error around five times of the response control
speed. Fig. 13 shows the variation of the error between the actual state variables and observed state
variables versus time, for the case of U ¼ 50m=s: It is seen from the figure that after about 10 s, the
values of the estimated variables approach to the actual variables. A similar behavior is observed
for the other two cases of the wind speed. ½Ke� for the three cases are also given in Table 3.
8. Conclusion

An efficient closed-loop state feed back control scheme using pole-placement technique is
presented for active control of suspension bridge flutter. The control algorithm consists of
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Fig. 10. Controlled and uncontrolled bridge responses due to initial conditions at mean wind speed U ¼ 60m=s:
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Table 3

State feedback gain matrix ½K1� and observer gain matrix ½Ke� for different cases

Case 1, U ¼ 50 (m/s) Case 2, U ¼ Uf ¼ 55:52 (m/s) Case 3, U ¼ 60 (m/s)

State feedback

gain matrix ½K1�

Observer gain

matrix ½Ke�

State feedback

gain matrix ½K1�

Observer gain

matrix ½Ke�

State feedback

gain matrix ½K1�

Observer gain

matrix ½Ke�

0.0448 �22012.00 0.0003 �1946.87 �0.0004 �1712.72

3.5924 �47.67 �0.1300 �77.11 0.2845 �103.02

�0.2376 28585.79 0.0012 28095.86 0.0003 25242.39

�0.2200 �33095.48 0.0065 �23983.13 0.2114 �16972.99

�0.4769 14356.92 �0.0008 2971.71 0.0007 4115.57

�57.3547 �1073.93 �0.0879 �1084.34 0.1028 �1095.45

�0.0725 �1263.37 �0.00007 �22187.15 �0.00006 �37726.37

0.2367 27892.86 0.1599 40143.30 0.1693 43608.88
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Fig. 11. Control force to reduce the bridge response at mean wind speed U ¼ Uf ¼ 55:52m=s:
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Fig. 12. Control force to reduce the bridge response at mean wind speed U ¼ 60m=s:

S. Pourzeynali, T.K. Datta / Journal of Sound and Vibration 282 (2005) 89–109106
designing a state feedback gain matrix, which forces the real part of the dominant pole of the
system to a desired negative value. The control algorithm performs in conjunction with a full-
order state observer. The control strategy is used to increase the flutter wind speed of Vincent
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Thomas Bridge by applying an active torsional moment at the middle of its center span.
Numerical studies on the bridge show that
(i)
 The proposed control strategy significantly reduces the decay time to bring down the transient
response to almost zero value for aerodynamic excitation caused by a wind speed less than the
flutter wind speed.
(ii)
 For wind speed greater than/equal to the flutter wind speed, the divergent/sustained
oscillations (respectively) are brought down to about zero value by the control strategy within
a decay time of about 50 s.
(iii)
 The maximum values of the required control force of the three cases are nearly the same and
are quite small.
Appendix A

Matrices ½AF
� and ½BF � can be written as

½AF
� ¼

H�
1L1 zeros B0H�

2L1 zeros

. .
. . .

.

zeros H�
1Ln zeros BH�

2Ln

B0A�
1L1 zeros B02A�

2L1 zeros

. .
. . .

.

zeros B0A�
1Ln zeros B02A�

2Ln

2
666666666664

3
777777777775
ð2n	2nÞ

(A.1)
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and

½BF � ¼

H�
4

B0 L1 zeros H�
3L1 zeros

. .
. . .

.

zeros
H�

4

B0 Ln zeros H�
3Ln

A�
4L1 zeros B0A�

3L1 zeros

. .
. . .

.

zeros A�
4Ln zeros B0A�

3Ln

2
666666666664

3
777777777775
ð2n	2nÞ

: (A.2)
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